English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Diffusion and interaction in PEG-DA hydrogels

MPS-Authors
/persons/resource/persons75557

Haraszti,  Tamas
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons75304

Böhm,  Heike
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hagel, V., Haraszti, T., & Böhm, H. (2013). Diffusion and interaction in PEG-DA hydrogels. Biointerphases, 8(1): 36, pp. 1-9. doi:10.1186/1559-4106-8-36.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-C6DD-3
Abstract
Polyethylenglycol (PEG) hydrogels are widely used as tuneable substrates for biological and technical applications due to their good biocompatibility and their high hydrophilicity. Here we compare the mesh size and diffusion characteristics of PEG hydrogels by analyzing the diffusion of solutes with different, well-defined sizes over long and short time scales. Interestingly, one can tune the mesh size and the density of the gel simply by changing the inital concentrations of the PEG-diacrylate (PEG-DA) polymer, which also enhances the solute uptake in equilibrium through the interaction with the PEG chains. This increased uptake can be characterized by an enhancement factor determined by partition ratio analysis. It increases linearly with the polymer volume fraction, but is not caused by immobilization inside the hydrogel as evident from FRAP measurements, thus rendering these hydrogels ideal materials for i.e. drug delivery applications.