Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Universal temporal response of fibroblasts adhering on cyclically stretched substrates

MPG-Autoren
/persons/resource/persons75641

Jungbauer,  Simon
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons75224

Aragüés Rioja,  Borja
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons75667

Kemkemer,  Ralf
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jungbauer, S., Aragüés Rioja, B., Spatz, J. P., & Kemkemer, R. (2010). Universal temporal response of fibroblasts adhering on cyclically stretched substrates. In K. Garikipati, & E. M. Arruda (Eds.), IUTAM Symposium on Cellular, Molecular and Tissue Mechanics (pp. 103-109). Dordrecht [et al.]: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-3B23-D
Zusammenfassung
It is well known that many cells adherent on a cyclically stretched substrate reorient nearly perpendicular to the applied stretching direction. Such periodic mechanical signals are characterized by the stretching amplitude and frequency ad many studies focus on the influence of the amplitude on the orientation behavior. However, little is know about the temporal characteristic and dynamics of this cellular response. Consequently, we developed an experimental stretch system for live cell imaging. Using this setup, we observed the dynamic reorientation of different human fibroblast types over a frequency range 0.01–10 s−1 and a constant stretching amplitude of 8%. We demonstrate an increasing mean cell orientation with an exponentially time characteristics. The characteristic time τ for the reorientation is frequency-dependent and is in a range from 1 to 5 h. This characteristic time is a function of frequency and follows a power law for frequencies below 1s−1,τ decreases with a power law as the frequency increases. For frequencies above 1s−1,τ is nearly constant and the kinetics of cell reorientation is in saturation. In addition, a threshold frequency is found below which no significant cell reorientation occurs. Our results are consistent for the two different human fibroblast types and indicate a saturation of molecular mechanisms of mechanotransduction or response machinery for subconfluent cells within the frequency regime under investigation.