English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat

MPS-Authors
/persons/resource/persons201676

Huang,  Jianbei
Tree Mortality Mechanisms, Dr. H. Hartmann, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons127774

Forkelova,  Lenka
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;
Tree Mortality Mechanisms, Dr. H. Hartmann, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62400

Hartmann,  Henrik
Tree Mortality Mechanisms, Dr. H. Hartmann, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource

https://doi.org/10.1111/pce.12885
(Publisher version)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2571.pdf
(Publisher version), 2MB

Supplementary Material (public)

BGC2571s1.dotx
(Supplementary material), 411KB

Citation

Huang, J., Hammerbacher, A., Forkelova, L., & Hartmann, H. (2017). Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat. Plant, Cell and Environment, 40(5), 672-685. doi:10.1111/pce.12885.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-2FBF-F
Abstract
The atmospheric CO2 concentration ([CO2]) is rapidly increasing and this may have substantial impact on how plants allocate metabolic resources. A thorough understanding of allocation priorities can be achieved by modifying [CO2] over a large gradient, including low [CO2], thereby altering plant carbon (C) availability. Such information is of critical importance for understanding plant responses to global environmental change. We quantified the percentage of daytime whole-plant net assimilation (A) allocated to night-time respiration (R), structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during 8 weeks of vegetative growth in winter wheat (Triticum aestivum) growing at low, ambient, and elevated [CO2] (170, 390 and 680 ppm). R/A remained relatively constant over a large gradient of [CO2]. However, with increasing C availability, the fraction of assimilation allocated to biomass (SG + NSC + SMs), in particular NSC and SMs increased. At low [CO2] biomass and NSC increased in leaves but decreased in stems and roots, which may help plants achieve a functional equilibrium, i.e. overcome the most severe resource limitation. These results reveal that increasing C availability from rising [CO2] releases allocation constraints, thereby allowing greater investment into long-term survival in the form of NSC and SMs.