Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Mesoscale modeling of active nematics

MPG-Autoren
/persons/resource/persons201804

Tabet,  Joscha
Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2019_master_thesis_joscha_tabet.pdf
(Verlagsversion), 11MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tabet, J. (2019). Mesoscale modeling of active nematics. Master Thesis, Georg-August-Universität, Göttingen.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-3BBD-5
Zusammenfassung
Nematic liquid crystals are fluids whose anisotropic molecules have long range
orientational order, but no positional order. When the particles are driven by
some chemical or biological mechanism, the system is called active. The energy
supplied at the microscopic scale is transformed into organized motion at the large
scale. The coupling of the orientation field to the hydrodynamic and active forces
leads to rich, dynamical behaviors. We develop a framework for simulating such
active liquid crystals, based on the multiparticle collision dynamics algorithm
for hydrodynamics. The solver captures thermal fluctuations, is highly tunable,
and suited for complex boundary conditions. It is successfully validated against
analytical and numerical results of the isotropic-nematic phase transition, defect
annihilation, and activity. We use it to study the behavior of an active NLC
in cylindrical confinement, as well as in a deformed capillary with an elliptical
cross-section. Applying four different types of boundary conditions across a wide
range of activity magnitudes, we find a new non-equilibrium steady state. It is
characterized by two disclination lines orbiting the capillary center in ellipses of
varying aspect ratios. We find large asymmetries between extensile and contractile
active stresses for all steady states. The results are discussed in the context of
current research.