English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Geometric complexity theory and matrix powering

MPS-Authors
/persons/resource/persons202366

Ikenmeyer,  Christian
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:1611.00827.pdf
(Preprint), 310KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Gesmundo, F., Ikenmeyer, C., & Panova, G. (2016). Geometric complexity theory and matrix powering. Retrieved from http://arxiv.org/abs/1611.00827.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-4F88-9
Abstract
Valiant's famous determinant versus permanent problem is the flagship problem in algebraic complexity theory. Mulmuley and Sohoni (Siam J Comput 2001, 2008) introduced geometric complexity theory, an approach to study this and related problems via algebraic geometry and representation theory. Their approach works by multiplying the permanent polynomial with a high power of a linear form (a process called padding) and then comparing the orbit closures of the determinant and the padded permanent. This padding was recently used heavily to show no-go results for the method of shifted partial derivatives (Efremenko, Landsberg, Schenck, Weyman, 2016) and for geometric complexity theory (Ikenmeyer Panova, FOCS 2016 and B\"urgisser, Ikenmeyer Panova, FOCS 2016). Following a classical homogenization result of Nisan (STOC 1991) we replace the determinant in geometric complexity theory with the trace of a variable matrix power. This gives an equivalent but much cleaner homogeneous formulation of geometric complexity theory in which the padding is removed. This radically changes the representation theoretic questions involved to prove complexity lower bounds. We prove that in this homogeneous formulation there are no orbit occurrence obstructions that prove even superlinear lower bounds on the complexity of the permanent. This is the first no-go result in geometric complexity theory that rules out superlinear lower bounds in some model. Interestingly---in contrast to the determinant---the trace of a variable matrix power is not uniquely determined by its stabilizer.