日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Transgenic line for the identification of cholinergic release sites in Drosophila melanogaster

MPS-Authors
/persons/resource/persons181386

Pankova,  Katarina
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38770

Borst,  Alexander
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1405.full.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Pankova, K., & Borst, A. (2017). Transgenic line for the identification of cholinergic release sites in Drosophila melanogaster. The Journal of Experimental Biology, 220(8), 1405-1410. doi:10.1242/jeb.149369.


引用: https://hdl.handle.net/11858/00-001M-0000-002D-A5F7-C
要旨
The identification of neurotransmitter type used by a neuron is important for the functional dissection of neuronal circuits. In the model organism Drosophila melanogaster, several methods for discerning the neurotransmitter systems are available. Here, we expanded the toolbox for the identification of cholinergic neurons by generating a new line FRT-STOP-FRT-VAChT::HA that is a conditional tagged knock-in of the vesicular acetylcholine transporter (VAChT) gene in its endogenous locus. Importantly, in comparison to already available tools for the detection of cholinergic neurons, the FRT-STOP-FRT-VAChT:: HA allele also allows for identification of the subcellular localization of the cholinergic presynaptic release sites in a cell-specific manner. We used the newly generated FRT-STOP-FRT-VAChT:: HA line to characterize the Mi1 and Tm3 neurons in the fly visual system and found that VAChT is present in the axons of both cell types, suggesting that Mi1 and Tm3 neurons provide cholinergic input to the elementary motion detectors, the T4 neurons.