English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno)

MPS-Authors
/persons/resource/persons210765

Schubert,  C. J.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210581

Lösekann-Behrens,  Tina
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210522

Knittel,  K.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210280

Boetius,  A.
HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

Behrens.pdf
(Publisher version), 457KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Schubert, C. J., Vazquez, F., Lösekann-Behrens, T., Knittel, K., Tonolla, M., & Boetius, A. (2011). Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiology Ecology, 76(1), 26-38.


Cite as: http://hdl.handle.net/21.11116/0000-0001-C9AB-C
Abstract
Anaerobic oxidation of methane (AOM) has been investigated in sediments of a high alpine sulfate-rich lake. Hot spots of AOM could be identified based on geochemical and isotopic evidence. Very high fractionation of methane (α=1.031) during oxidation was observed in the uppermost sediment layers, where methane is oxidized most likely with sulfate-containing bottom waters. However, we could not exclude that other electron acceptors such as iron, or manganese might also be involved. Light carbon isotope values (δ13C=−10‰ vs. Vienna Pee Dee Belemnite [VPDB]) of sedimentary carbonates at 16–20 cm sediment depth are indicative of a zone where methane was oxidized and the resulting bicarbonate ions were used for carbonate precipitation. 16S rRNA gene analysis revealed the presence of sequences belonging to the marine benthic groups B, C, and D and to the recently described clade of AOM-associated archaea (AAA). Catalyzed reporter deposition-FISH analysis revealed a high abundance of Deltaproteobacteria, especially of free-living sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus branch of Deltaproteobacteria in the AOM zone. Here, loose aggregations of AAA cells were found, suggesting that AAA might be responsible for oxidation of methane in Lake Cadagno sediments.