Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Finite-size anisotropy in statistically uniform porous media

MPG-Autoren
/persons/resource/persons210597

Matyka,  M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210507

Khalili,  A.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Khalili9.pdf
(Verlagsversion), 392KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Koza, Z., Matyka, M., & Khalili, A. (2009). Finite-size anisotropy in statistically uniform porous media. Physical Review E, 79(6): 066306.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-CC0C-D
Zusammenfassung
Anisotropy of the permeability tensor in statistically uniform porous media of sizes used in typical computer simulations is studied. Although such systems are assumed to be isotropic by default, we show that de facto their anisotropic permeability can give rise to significant changes in transport parameters such as permeability and tortuosity. The main parameter controlling the anisotropy is a/L, being the ratio of the obstacle to system size. Distribution of the angle α between the external force and the volumetric fluid stream is found to be approximately normal, and the standard deviation of α is found to decay with the system size as (a/L)d/2, where d is the space dimensionality. These properties can be used to estimate both anisotropy-related statistical errors in large-scale simulations and the size of the representative elementary volume. For porous media types studied here, the anisotropy effect becomes negligible only if a/L≲0.01. This constraint was apparently violated in many previous computer simulations that need now to be recalculated.