Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A similarity relation for the non-linear energy-transfer in a finite-depth gravity-wave spectrum

MPG-Autoren

Herterich,  Klaus
MPI for Meteorology, Max Planck Society;

/persons/resource/persons37172

Hasselmann,  Klaus F.
MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Herterich, K., & Hasselmann, K. F. (1980). A similarity relation for the non-linear energy-transfer in a finite-depth gravity-wave spectrum. Journal of Fluid Mechanics, 97, 215-224. doi:10.1017/S0022112080002522.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-03F9-E
Zusammenfassung
The energy transfer in a finite-depth gravity-wave spectrum is investigated in the approximation of a narrow spectrum. It is shown that for ocean depths larger than approximately one tenth of the wavelength (kh [ges ] 0·7) the finite-depth case can be reduced to Longuet-Higgins’ (1976) result for an infinitely deep ocean by a similarity transformation involving changes in scale of the angular spreading function and the transfer rate. For shallower water (kh < 0·7) Longuet-Higgins’ expansion technique is no longer applicable without modification, as the nonlinear coupling coefficient develops a discontinuity at the origin of the expansion. In the range kh [ges ] 0·7 both the magnitude and the two-dimensional frequency-directional distribution of the energy transfer are found not to differ significantly (to within variations by a factor of 2) from the case of an infinitely deep ocean. The transformation rules relating the infinite-depth and finite-depth cases may provide a useful guide for constructing parametrizations of the nonlinear transfer for finite-depth wave prediction models.