Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

AlignTool: The automatic temporal alignment of spoken utterances in German, Dutch, and British English for psycholinguistic purposes

MPG-Autoren
/persons/resource/persons1167

Meyer,  Antje S.
Psychology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Radboud University Nijmegen;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Schillingmann_etal_2018.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schillingmann, L., Ernst, J., Keite, V., Wrede, B., Meyer, A. S., & Belke, E. (2018). AlignTool: The automatic temporal alignment of spoken utterances in German, Dutch, and British English for psycholinguistic purposes. Behavior Research Methods, 50(2), 466-489. doi:10.3758/s13428-017-1002-7.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-443C-1
Zusammenfassung
In language production research, the latency with which speakers produce a spoken response to a stimulus and the onset and offset times of words in longer utterances are key dependent variables. Measuring these variables automatically often yields partially incorrect results. However, exact measurements through the visual inspection of the recordings are extremely time-consuming. We present AlignTool, an open-source alignment tool that establishes preliminarily the onset and offset times of words and phonemes in spoken utterances using Praat, and subsequently performs a forced alignment of the spoken utterances and their orthographic transcriptions in the automatic speech recognition system MAUS. AlignTool creates a Praat TextGrid file for inspection and manual correction by the user, if necessary. We evaluated AlignTool’s performance with recordings of single-word and four-word utterances as well as semi-spontaneous speech. AlignTool performs well with audio signals with an excellent signal-to-noise ratio, requiring virtually no corrections. For audio signals of lesser quality, AlignTool still is highly functional but its results may require more frequent manual corrections. We also found that audio recordings including long silent intervals tended to pose greater difficulties for AlignTool than recordings filled with speech, which AlignTool analyzed well overall. We expect that by semi-automatizing the temporal analysis of complex utterances, AlignTool will open new avenues in language production research.