Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cosmological perturbations from full quantum gravity

MPG-Autoren
/persons/resource/persons39400

Gielen,  Steffen
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20698

Oriti,  Daniele
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1709.01095.pdf
(Preprint), 162KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gielen, S., & Oriti, D. (2018). Cosmological perturbations from full quantum gravity. Physical Review D, 98: 106019. doi:10.1103/PhysRevD.98.106019.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-6393-A
Zusammenfassung
The early universe provides an opportunity for quantum gravity to connect to
observation by explaining the large-scale structure of the Universe. In the
group field theory (GFT) approach, a macroscopic universe is described as a GFT
condensate; this idea has already been shown to reproduce a semiclassical large
universe under generic conditions, and to replace the cosmological singularity
by a quantum bounce. Here we extend the GFT formalism by introducing additional
scalar degrees of freedom that can be used as a physical reference frame for
space and time. This allows, for the first time, the extraction of correlation
functions of inhomogeneities in GFT condensates: in a way conceptually similar
to inflation, but within a quantum field theory of both geometry and matter,
quantum fluctuations of a homogeneous background geometry become the seeds of
cosmological inhomogeneities. We compute the power spectrum of scalar
cosmological perturbations and find that it is naturally approximately scale
invariant, with a naturally small amplitude. This confirms the potential of GFT
condensate cosmology to provide a purely quantum gravitational foundation for
the understanding of the early universe.