Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

In silico promoter recognition from deepCAGE data

MPG-Autoren
/persons/resource/persons217933

Yang,  Xinyi
Computational Epigenetics (Ho-Ryun Chung), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50424

Marsico,  Annalisa
RNA Bioinformatics (Annalisa Marsico), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;
Department of Mathematics and Informatics, Free University of Berlin, Berlin, 14195, Germany;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Yang.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yang, X., & Marsico, A. (2017). In silico promoter recognition from deepCAGE data. In U. A. Ørom (Ed.), Enhancer RNAs: Methods and Protocols. doi:10.1007/978-1-4939-4035-6_13.


Zitierlink: http://hdl.handle.net/21.11116/0000-0000-F6C6-B
Zusammenfassung
The accurate identification of transcription start regions corresponding to the promoters of known genes, novel coding, and noncoding transcripts, as well as enhancer elements, is a crucial step towards a complete understanding of state-specific gene regulatory networks. Recent high-throughput techniques, such as deepCAGE or single-molecule CAGE, have made it possible to identify the genome-wide location, relative expression, and differential usage of transcription start regions across hundreds of different tissues and cell lines. Here, we describe in detail the necessary computational analysis of CAGE data, with focus on two recent in silico methodologies for CAGE peak/profile definition and promoter recognition, namely the Decomposition-based Peak Identification (DPI) and the PROmiRNA software. We apply both methodologies to the challenging task of identifying primary microRNAs transcript (pri-miRNA) start sites and compare the results.