English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Flow rate of transport network controls uniform metabolite supply to tissue

MPS-Authors
/persons/resource/persons221177

Meigel,  Felix J.
Max Planck Research Group Biological Physics and Morphogenesis, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons199622

Alim,  Karen
Max Planck Research Group Biological Physics and Morphogenesis, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Meigel, F. J., & Alim, K. (2018). Flow rate of transport network controls uniform metabolite supply to tissue. Journal of the Royal Society Interface, 15(142): 20180075. doi:10.1098/rsif.2018.0075.


Cite as: https://hdl.handle.net/21.11116/0000-0001-5EAB-6
Abstract
Life and functioning of higher organisms depends on the continuous supply of metabolites to tissues and organs. What are the requirements on the transport network pervading a tissue to provide a uniform supply of nutrients, minerals or hormones? To theoretically answer this question, we present an analytical scaling argument and numerical simulations on how flow dynamics and network architecture control active spread and uniform supply of metabolites by studying the example of xylem vessels in plants. We identify the fluid inflow rate as the key factor for uniform supply. While at low inflow rates metabolites are already exhausted close to flow inlets, too high inflow flushes metabolites through the network and deprives tissue close to inlets of supply. In between these two regimes, there exists an optimal inflow rate that yields a uniform supply of metabolites. We determine this optimal inflow analytically in quantitative agreement with numerical results. Optimizing network architecture by reducing the supply variance over all network tubes, we identify patterns of tube dilation or contraction that compensate sub-optimal supply for the case of too low or too high inflow rate.