English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

Ex vivo continuous Overhauser nuclear dynamic polarization in a SQUID-based ultralow-field magnetic resonance imaging system

MPS-Authors
/persons/resource/persons216006

Fehling,  P
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192879

Bernard,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84145

Pohmann,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214707

Rudolph,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133443

Buckenmaier,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Abstract)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fehling, P., Bernard, R., Pohmann, R., Rudolph, M., Koelle, D., Kleiner, R., et al. (2018). Ex vivo continuous Overhauser nuclear dynamic polarization in a SQUID-based ultralow-field magnetic resonance imaging system. In 82. Jahrestagung der Deutschen Physikalischen Gesellschaft und DPG-Frühjahrstagung (pp. 96).


Cite as: https://hdl.handle.net/21.11116/0000-0001-7E47-3
Abstract
Overhauser Dynamic Nuclear Polarization (ODNP) is a hyperpolarization method for magnetic resonance measurements. The polarization of free radicals is transferred to 1H using HF pulses, thus enhancing the 1H signal. Only at UltraLow Fields (ULF) below 10 mT the corresponding HF pulse frequencies are low enough to penetrate large sample volumes, making continuous in vivo hyperpolarization possible. Since conventional Faraday coils are not sensitive enough at ULF, a SQUID-based detector is employed as the centerpiece of the ULF-MRI Scanner. With a superconducting second order gradiometric pickup coil the SQUID enables measurements with a sensitivity below 1 fT/√Hz. First proof-of-principle ex vivo images using ODNP enhanced, SQUID based ULF-MRI have been acquired successfully. This is an important step in the direction of a combined ULF MRI and magnetoencephalography system.