English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hippo signaling promotes lung epithelial lineage commitment by curbing Fgf10 and beta-catenin signaling

MPS-Authors
/persons/resource/persons77945

Fässler,  Reinhard
Fässler, Reinhard / Molecular Medicine, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Volckaert, T., Yuan, T., Yuan, J., Boateng, E., Hopkins, S., Zhang, J.-S., et al. (2019). Hippo signaling promotes lung epithelial lineage commitment by curbing Fgf10 and beta-catenin signaling. Development, 146(2): UNSP dev166454. doi:10.1242/dev.166454.


Cite as: https://hdl.handle.net/21.11116/0000-0003-403B-3
Abstract
Organ growth and tissue homeostasis rely on the proliferation and differentiation of progenitor cell populations. In the developing lung, localized Fgf10 expression maintains distal Sox9-expressing epithelial progenitors and promotes basal cell differentiation in the cartilaginous airways. Mesenchymal Fgf10 expression is induced by Wnt signaling but inhibited by Shh signaling, and epithelial Fgf10 signaling activates beta-catenin signaling. The Hippo pathway is a well-conserved signaling cascade that regulates organ size and stem/progenitor cell behavior. Here, we show that Hippo signaling promotes lineage commitment of lung epithelial progenitors by curbing Fgf10 and beta-catenin signaling. Our findings show that both inactivation of the Hippo pathway (nuclear Yap) or ablation of Yap result in increased beta-catenin and Fgf10 signaling, suggesting a cytoplasmic role for Yap in epithelial lineage commitment. We further demonstrate redundant and non-redundant functions for the two nuclear effectors of the Hippo pathway, Yap and Taz, during lung development.