Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

We Are Not Your Real Parents: Telling Causal from Confounded using MDL

MPG-Autoren
/persons/resource/persons230568

Kaltenpoth,  David
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons79525

Vreeken,  Jilles
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:1901.06950.pdf
(Preprint), 701KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kaltenpoth, D., & Vreeken, J. (2019). We Are Not Your Real Parents: Telling Causal from Confounded using MDL. Retrieved from http://arxiv.org/abs/1901.06950.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-FFEE-3
Zusammenfassung
Given data over variables $(X_1,...,X_m, Y)$ we consider the problem of
finding out whether $X$ jointly causes $Y$ or whether they are all confounded
by an unobserved latent variable $Z$. To do so, we take an
information-theoretic approach based on Kolmogorov complexity. In a nutshell,
we follow the postulate that first encoding the true cause, and then the
effects given that cause, results in a shorter description than any other
encoding of the observed variables.
The ideal score is not computable, and hence we have to approximate it. We
propose to do so using the Minimum Description Length (MDL) principle. We
compare the MDL scores under the models where $X$ causes $Y$ and where there
exists a latent variables $Z$ confounding both $X$ and $Y$ and show our scores
are consistent. To find potential confounders we propose using latent factor
modeling, in particular, probabilistic PCA (PPCA).
Empirical evaluation on both synthetic and real-world data shows that our
method, CoCa, performs very well -- even when the true generating process of
the data is far from the assumptions made by the models we use. Moreover, it is
robust as its accuracy goes hand in hand with its confidence.