English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The asymptotic expansion of a hypergeometric series coming from mirror symmetry

MPS-Authors
/persons/resource/persons236201

Shokri,  Khosro M.
Max Planck Institute for Mathematics, Max Planck Society;

External Ressource
Supplementary Material (public)
There is no public supplementary material available
Citation

Shokri, K. M. (2016). The asymptotic expansion of a hypergeometric series coming from mirror symmetry. Journal für die Reine und Angewandte Mathematik, 710, 21-56. doi:10.1515/crelle-2013-0108.


Cite as: http://hdl.handle.net/21.11116/0000-0004-0DD2-1
Abstract
In this paper we give a description of the coefficients of the asymptotic expansion of the logarithmic derivative of a family of hypergeometric series. This family plays an important role in the computation of the reduced genus one Gromov-Witten invariants of projective hypersurfaces and the confirmation of Bershadsky, Cecotti, Ooguri, Vafa (BCOV) conjecture for genus one Gromov-Witten invariants of a generic quintic threefold by Zinger.