Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Periods of modular forms and Jacobi theta functions

MPG-Autoren
/persons/resource/persons236497

Zagier,  Don
Max Planck Institute for Mathematics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zagier, D. (1991). Periods of modular forms and Jacobi theta functions. Inventiones Mathematicae, 104(3), 449-465. doi:10.1007/BF01245085.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-3923-5
Zusammenfassung
In an earlier paper \\it W. Kohnen and \\it D. Zagier [Modular forms, Symp. Durham 1983, 197-249 (1983; Zbl 0618.10019)] introduced the period polynomial r\\sb f(X)=\\int\\sb 0\\spi∞f(τ)(τ-X)\\spk-2dτ for a cusp form f of weight k in the context of the Eichler-Shimura isomorphism. There they also derived a formula for the (rational) coefficients of a related polynomial in two variables.\\par In the paper under review the author gives a more attractive formula by introducing a generating function. First of all the definition of r\\sb f(X) is extended to f\\in M\\sb k, the space of elliptic modular forms of weight k. Then the generating function is \\align C(X,Y;τ,T) amp; = (XY-1)(X+Y)\\over X\\sp 2Y\\sp 2T\\sp-2 \\\\ amp; +\\sum\\sp ∞\\sbk=2\\sum\\sbf\\in M\\sb k\\atop\\texteigenformr\\sb f(X)r\\sb f(Y)-r\\sb f(-X)r\\sb f(-Y)\\over 2(2i)\\spk-3(f,f)(k-2)! f(τ)T\\spk- 2,\\endalign where (f,f) is the Petersson scalar product. If \\Theta(u)=\\Theta\\sb τ(u) denotes the Jacobi theta function, one obtains the surprising identity C(X,Y;τ,T)=\\Theta'(0)\\sp 2\\Theta((XY-1)T) \\Theta((X+Y)T)\\over \\Theta(XYT) \\Theta(XT) \\Theta(YT) \\Theta(T). The right hand side can also be rewritten, where the Eisenstein series G\\sb k, k≥ 2, are involved in place of the theta function.