English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

No language unification without neural feedback: How awareness affects sentence processing

MPS-Authors
/persons/resource/persons199755

Mongelli,  Valeria
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;
Department of Psychology, University of Amsterdam;
Amsterdam Brain and Cognition (ABC), University of Amsterdam;

/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Mongelli_2019_etal.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Mongelli, V., Meijs, E. L., Van Gaal, S., & Hagoort, P. (2019). No language unification without neural feedback: How awareness affects sentence processing. Neuroimage, 202: 116063. doi:10.1016/j.neuroimage.2019.116063.


Cite as: https://hdl.handle.net/21.11116/0000-0004-683C-5
Abstract
How does the human brain combine a finite number of words to form an infinite variety of sentences? According to the Memory, Unification and Control (MUC) model, sentence processing requires long-range feedback from the left inferior frontal cortex (LIFC) to left posterior temporal cortex (LPTC). Single word processing however may only require feedforward propagation of semantic information from sensory regions to LPTC. Here we tested the claim that long-range feedback is required for sentence processing by reducing visual awareness of words using a masking technique. Masking disrupts feedback processing while leaving feedforward processing relatively intact. Previous studies have shown that masked single words still elicit an N400 ERP effect, a neural signature of semantic incongruency. However, whether multiple words can be combined to form a sentence under reduced levels of awareness is controversial. To investigate this issue, we performed two experiments in which we measured electroencephalography (EEG) while 40 subjects performed a masked priming task. Words were presented either successively or simultaneously, thereby forming a short sentence that could be congruent or incongruent with a target picture. This sentence condition was compared with a typical single word condition. In the masked condition we only found an N400 effect for single words, whereas in the unmasked condition we observed an N400 effect for both unmasked sentences and single words. Our findings suggest that long-range feedback processing is required for sentence processing, but not for single word processing.