English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Real embedding and equivariant eta forms

MPS-Authors
/persons/resource/persons241006

Liu,  Bo
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:1706.07121.pdf
(Preprint), 422KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Liu, B. (2019). Real embedding and equivariant eta forms. Mathematische Zeitschrift, 292(3-4), 849-878. doi:10.1007/s00209-018-2119-9.


Cite as: https://hdl.handle.net/21.11116/0000-0004-9BD4-E
Abstract
Bismut and Zhang (Math Ann 295(4):661–684,
1993) establish a mod Z embedding formula
of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden mod Z
term as a spectral flow and extend this embedding formula to the equivariant family case. In this case, the spectral flow is generalized to the equivariant Chern character of some equivariant Dai–Zhang higher spectral flow.