# Item

ITEM ACTIONSEXPORT

Released

Paper

#### Convergence of the Non-Uniform Directed Physarum Model

##### MPS-Authors

##### Locator

There are no locators available

##### Fulltext (public)

arXiv:1906.07781.pdf

(Preprint), 687KB

##### Supplementary Material (public)

There is no public supplementary material available

##### Citation

Facca, E., Karrenbauer, A., Kolev, P., & Mehlhorn, K. (2019). Convergence of the Non-Uniform Directed Physarum Model. Retrieved from http://arxiv.org/abs/1906.07781.

Cite as: http://hdl.handle.net/21.11116/0000-0005-1DBA-A

##### Abstract

The directed Physarum dynamics is known to solve positive linear programs:
minimize $c^T x$ subject to $Ax = b$ and $x \ge 0$ for a positive cost vector
$c$. The directed Physarum dynamics evolves a positive vector $x$ according to
the dynamics $\dot{x} = q(x) - x$. Here $q(x)$ is the solution to $Af = b$ that
minimizes the "energy" $\sum_i c_i f_i^2/x_i$.
In this paper, we study the non-uniform directed dynamics $\dot{x} = D(q(x) -
x)$, where $D$ is a positive diagonal matrix. The non-uniform dynamics is more
complex than the uniform dynamics (with $D$ being the identity matrix), as it
allows each component of $x$ to react with different speed to the differences
between $q(x)$ and $x$. Our contribution is to show that the non-uniform
directed dynamics solves positive linear programs.