English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Automated glycan assembly of arabinomannan oligosaccharides from Mycobacterium tuberculosis

MPS-Authors
/persons/resource/persons220606

Pardo-Vargas,  Alonso
Peter H. Seeberger - Automated Systems, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons180982

Bharate,  Priya
Peter H. Seeberger - Nanoparticles and Colloidal Polymers, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons187996

Delbianco,  Martina
Martina Delbianco, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121849

Seeberger,  Peter H.
Peter H. Seeberger - Automated Systems, Biomolekulare Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Article.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Pardo-Vargas, A., Bharate, P., Delbianco, M., & Seeberger, P. H. (2019). Automated glycan assembly of arabinomannan oligosaccharides from Mycobacterium tuberculosis. Beilstein Journal of Organic Chemistry, 15, 2936-2940. doi:10.3762/bjoc.15.288.


Cite as: https://hdl.handle.net/21.11116/0000-0005-5981-5
Abstract
Arabinomannan (AM) polysaccharides are clinical biomarkers for Mycobacterium tuberculosis (MTB) infections due to their roles in the interaction with host cells and interference with macrophage activation. Collections of defined AM oligosaccharides can help to improve the understanding of these polysaccharides and the development of novel therapeutical and diagnostic agents. Automated glycan assembly (AGA) was employed to prepare the core structure of AM from MTB, containing α-(1,6)-Man, α-(1,5)-Ara, and α-(1,2)-Man linkages. The introduction of a capping step after each glycosylation and further optimized reaction conditions allowed for the synthesis of a series of oligosaccharides, ranging from hexa- to branched dodecasaccharides.