Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0,1Ce0,9O2-x

MPG-Autoren
/persons/resource/persons21376

Bluhm,  Hendrik
Chemical Sciences Division, Lawrence Berkeley National Laboratory;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2671_2_merged_1573743367.pdf
(beliebiger Volltext), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chen, D., Guan, Z., Zhang, D., Trotochaud, L., Crumlin, E., Nemsak, S., et al. (2020). Constructing a pathway for mixed ion and electron transfer reactions for O2 incorporation in Pr0,1Ce0,9O2-x. Nature Catalysis, 3(2), 116-124. doi:10.1038/s41929-019-0401-9.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-8ECE-4
Zusammenfassung
In interfacial charge-transfer reactions, the complexity of the reaction pathway increases with the number of charges transferred, and becomes even greater when the reaction involves both electrons (charge) and ions (mass). These so-called mixed ion and electron transfer (MIET) reactions are crucial in intercalation/insertion electrochemistry, such as that occurring in oxygen reduction/evolution electrocatalysts and lithium-ion battery electrodes. Understanding MIET reaction pathways, particularly identifying the rate-determining step (RDS), is crucial for engineering interfaces at the molecular, electronic and point defect levels. Here we develop a generalizable experimental and analysis framework for constructing the reaction pathway for the incorporation of O2(g) in Pr0,1Ce0,9O2-x. We converge on four candidates for the RDS (dissociation of neutral oxygen adsorbate) out of more than 100 possibilities by measuring the current density–overpotential curves while controlling both oxygen activity in the solid and oxygen gas partial pressure, and by quantifying the chemical and electrostatic driving forces using operando ambient pressure X-ray photoelectron spectroscopy.