English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

On-chip inverted emulsion method for fast giant vesicle production, handling, and analysis

MPS-Authors
/persons/resource/persons228896

Yandrapalli,  Naresh
Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons246101

Seemann,  Tina
Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons195358

Robinson,  Tom
Tom Robinson, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

Article.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Yandrapalli, N., Seemann, T., & Robinson, T. (2020). On-chip inverted emulsion method for fast giant vesicle production, handling, and analysis. Micromachines, 11(3): 285. doi:10.3390/mi11030285.


Cite as: http://hdl.handle.net/21.11116/0000-0005-E0DD-5
Abstract
Liposomes and giant unilamellar vesicles (GUVs) in particular are excellent compartments for constructing artificial cells. Traditionally, their use requires bench-top vesicle growth, followed by experimentation under a microscope. Such steps are time-consuming and can lead to loss of vesicles when they are transferred to an observation chamber. To overcome these issues, we present an integrated microfluidic chip which combines GUV formation, trapping, and multiple separate experiments in the same device. First, we optimized the buffer conditions to maximize both the yield and the subsequent trapping of the vesicles in micro-posts. Captured GUVs were monodisperse with specific size of 18 ± 4 µm in diameter. Next, we introduce a two-layer design with integrated valves which allows fast solution exchange in less than 20 s and on separate sub-populations of the trapped vesicles. We demonstrate that multiple experiments can be performed in a single chip with both membrane transport and permeabilization assays. In conclusion, we have developed a versatile all-in-one microfluidic chip with capabilities to produce and perform multiple experiments on a single batch of vesicles using low sample volumes. We expect this device will be highly advantageous for bottom-up synthetic biology where rapid encapsulation and visualization is required for enzymatic reactions.