Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Frequency domain reduced order model of aligned-spin effective-one-body waveforms with higher-order modes

MPG-Autoren
/persons/resource/persons226619

Cotesta,  Roberto
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192115

Pürrer,  Michael
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2003.12079.pdf
(Preprint), 4MB

PhysRevD.101.124040.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cotesta, R., Marsat, S., & Pürrer, M. (2020). Frequency domain reduced order model of aligned-spin effective-one-body waveforms with higher-order modes. Physical Review D, 101(12): 124040. doi:10.1103/PhysRevD.101.124040.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-3AF9-1
Zusammenfassung
We present a frequency domain reduced order model (ROM) for the aligned-spin
effective-one-body (EOB) model for binary black holes (BBHs) SEOBNRv4HM that
includes the spherical harmonics modes $(\ell, |m|) = (2,1),(3,3),(4,4),(5,5)$
beyond the dominant $(\ell, |m|) = (2,2)$ mode. These higher modes are crucial
to accurately represent the waveform emitted from asymmetric BBHs. We discuss a
decomposition of the waveform, extending other methods in the literature, that
allows us to accurately and efficiently capture the morphology of higher mode
waveforms. We show that the ROM is very accurate with median (maximum) values
of the unfaithfulness against SEOBNRv4HM lower than $0.001\% (0.03\%)$ for
total masses in $[2.8,100] M_\odot$. For a total mass of $M = 300 M_\odot$ the
median (maximum) value of the unfaithfulness increases up to $0.004\%
(0.17\%)$. This is still at least an order of magnitude lower than the
estimated accuracy of SEOBNRv4HM compared to numerical relativity simulations.
The ROM is two orders of magnitude faster in generating a waveform compared to
SEOBNRv4HM. Data analysis applications typically require
$\mathcal{O}(10^6-10^8)$ waveform evaluations for which SEOBNRv4HM is in
general too slow. The ROM is therefore crucial to allow the SEOBNRv4HM waveform
to be used in searches and Bayesian parameter inference. We present a targeted
parameter estimation study that shows the improvements in measuring binary
parameters when using waveforms that includes higher modes and compare against
three other waveform models.