English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

3d-3d correspondence for mapping tori

MPS-Authors
/persons/resource/persons235377

Gukov,  Sergei
Max Planck Institute for Mathematics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Chun, S., Gukov, S., Park, S., & Sopenko, N. (2020). 3d-3d correspondence for mapping tori. Journal of High Energy Physics, 2020(9): 152. doi:10.1007/JHEP09(2020)152.


Cite as: https://hdl.handle.net/21.11116/0000-0007-4431-5
Abstract
One of the main challenges in 3d-3d correspondence is that no existent
approach offers a complete description of 3d $N=2$ SCFT $T[M_3]$ --- or,
rather, a "collection of SCFTs" as we refer to it in the paper --- for all
types of 3-manifolds that include, for example, a 3-torus, Brieskorn spheres,
and hyperbolic surgeries on knots. The goal of this paper is to overcome this
challenge by a more systematic study of 3d-3d correspondence that, first of
all, does not rely heavily on any geometric structure on $M_3$ and, secondly,
is not limited to a particular supersymmetric partition function of $T[M_3]$.
In particular, we propose to describe such "collection of SCFTs" in terms of 3d
$N=2$ gauge theories with "non-linear matter'' fields valued in complex group
manifolds. As a result, we are able to recover familiar 3-manifold invariants,
such as Turaev torsion and WRT invariants, from twisted indices and
half-indices of $T[M_3]$, and propose new tools to compute more recent
$q$-series invariants $\hat Z (M_3)$ in the case of manifolds with $b_1 > 0$.
Although we use genus-1 mapping tori as our "case study," many results and
techniques readily apply to more general 3-manifolds, as we illustrate
throughout the paper.