Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spectram: A MATLAB® and GNU octave toolbox for transition model guided deconvolution of dynamic spectroscopic data

MPG-Autoren
/persons/resource/persons200414

Rabe,  Martin
Spectroscopy at Electrochemical Interfaces, Project Groups, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

323-4243-1-PB.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rabe, M. (2020). Spectram: A MATLAB® and GNU octave toolbox for transition model guided deconvolution of dynamic spectroscopic data. Journal of Open Research Software, 8: 13. doi:10.5334/JORS.323.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-6056-C
Zusammenfassung
Spectroscopic data, depending on an experimentally controllable variable, contains a wealth of information for researchers. However, complex spectra with overlapping peaks and multiple transitions complicate its straightforward interpretation and often the full contained information cannot be extracted. Here, the Spectram toolbox for MATLAB® and GNU Octave is described which was developed to analyse such data by a method based on singular value decomposition (SVD) and transition model coupled recombination. The method employs user-defined transition models, which depend on the control variable and are often known, or empirical descriptions of the transitions, which often can be guessed, to deconvolute such data. The outcome are the spectral components associated to the transitions and the model parameters. Both can be directly interpreted in terms of their physical meaning. Spectram can be applied to any desired spectroscopic technique and gives full freedom in the choice of the applied models, making it highly reusable. © 2020 Ubiquity Press.