English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Rhythm in dyadic interactions

MPS-Authors
/persons/resource/persons249731

de Reus,  Koen
Comparative Bioacoustics, MPI for Psycholinguistics, Max Planck Society;
Artificial Intelligence Lab, Vrije Universiteit Brussel;

/persons/resource/persons201698

Ravignani,  Andrea
Comparative Bioacoustics, MPI for Psycholinguistics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

de Reus, K., Soma, M., Anichini, M., Gamba, M., de Heer Kloots, M., Lense, M., et al. (2021). Rhythm in dyadic interactions. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376: 20200337. doi:10.1098/rstb.2020.0337.


Cite as: https://hdl.handle.net/21.11116/0000-0007-788C-5
Abstract
This review paper discusses rhythmic dyadic interactions in social and sexual contexts. We report rhythmic interactions during communication within dyads, as found in humans, non-human primates, non-primate mammals, birds, anurans and insects. Based on the patterns observed, we infer adaptive explanations for the observed rhythm interactions and identify knowledge gaps. Across species, the social environment during ontogeny is a key factor in shaping adult signal repertoires and timing mechanisms used to regulate interactions. The degree of temporal coordination is influenced by the dynamic and strength of the dyadic interaction. Most studies of temporal structure in interactive signals mainly focus on one modality (acoustic and visual); we suggest more work should be performed on multimodal signals. Multidisciplinary approaches combining cognitive science, ethology and ecology should shed more light on the exact timing mechanisms involved. Taken together, rhythmic signalling behaviours are widespread and critical in regulating social interactions across taxa.