English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nematicity Arising from a Chiral Superconducting Ground State in Magic-Angle Twisted Bilayer Graphene under In-Plane Magnetic Fields

MPS-Authors
/persons/resource/persons250285

Yu,  T.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;
Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco;

/persons/resource/persons182604

Sentef,  M. A.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

PhysRevLett.127.127001.pdf
(Publisher version), 474KB

Supplementary Material (public)

Supplemental_Material.pdf
(Supplementary material), 441KB

Citation

Yu, T., Kennes, D. M., Rubio, A., & Sentef, M. A. (2021). Nematicity Arising from a Chiral Superconducting Ground State in Magic-Angle Twisted Bilayer Graphene under In-Plane Magnetic Fields. Physical Review Letters, 127(12): 127001. doi:10.1103/PhysRevLett.127.127001.


Cite as: https://hdl.handle.net/21.11116/0000-0007-ACDC-0
Abstract
Recent measurements of the resistivity in magic-angle twisted bilayer graphene near the superconducting transition temperature show twofold anisotropy, or nematicity, when changing the direction of an in-plane magnetic field [Cao et al., Science 372, 264 (2021)]. This was interpreted as strong evidence for exotic nematic superconductivity instead of the widely proposed chiral superconductivity. Counterintuitively, we demonstrate that in two-dimensional chiral superconductors the in-plane magnetic field can hybridize the two chiral superconducting order parameters to induce a phase that shows nematicity in the transport response. Its paraconductivity is modulated as cos(2θB), with θB being the direction of the in-plane magnetic field, consistent with experiment in twisted bilayer graphene. We therefore suggest that the nematic response reported by Cao et al. does not rule out a chiral superconducting ground state.