Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bosonization of the Q=0 continuum of Dirac fermions

MPG-Autoren
/persons/resource/persons256039

Mantilla,  Sebastian
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons217476

Sodemann,  Inti
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2002.05732.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mantilla, S., & Sodemann, I. (2020). Bosonization of the Q=0 continuum of Dirac fermions. Physical Review B, 102(12): 121103. doi:10.1103/PhysRevB.102.121103.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-CCBF-D
Zusammenfassung
We develop a bosonization formalism that captures nonperturbatively the interaction effects on the Q = 0 continuum of excitations of nodal fermions above one dimension. Our approach is a natural extension of the classic bosonization scheme for higher dimensional Fermi surfaces to include the Q = 0 neutral excitations that would be absent in a single-band system. The problem is reduced to solving a boson bilinear Hamiltonian. We establish a rigorous microscopic footing for this approach by showing that the solution of such boson bilinear Hamiltonian is exactly equivalent to performing the infinite sum of Feynman diagrams associated with the Kadanoff-Baym particle-hole propagator that arises from the self-consistent Hartree-Fock approximation to the single-particle Green's function. We apply this machinery to compute the interaction corrections to the optical conductivity of two-dimensional Dirac fermions with Coulomb interactions reproducing the results of perturbative renormalization group at weak coupling and extending them to the strong-coupling regime.