English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts

MPS-Authors
/persons/resource/persons256105

Heinz,  Agnes
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons252768

Passow,  Hermann
Department of Cell Physiology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Heinz, A., & Passow, H. (1980). Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts. Journal of Membrane Biology, 57, 119-131. doi:10.1007/BF01868998.


Cite as: https://hdl.handle.net/21.11116/0000-0008-30F2-0
Abstract
The exposure of red cell ghosts to external Ca++ and K+ leads to a rapid net K+ efflux. Preincubation of the ghosts for various lengths of time in the absence of K+ in the external medium prior to a challenge with maximally effective concentrations of Ca++ and K+ renders the ghosts unresponsive to that challenge with a half-time of about 7–10 min. Preincubation at a range of K+ concentrations for a fixed length of time (60 min) prior to the challenge revealed that K+ concentrations of about 500 μm or more suffice to maintain the K+ channel in a maximally responsive state for at least 60 min. These K+ concentrations are considerably lower than the K+ concentrations required to make the responsive channel respond with a maximal rate of K+ efflux. Thus, external K+ is not only necessary to induce the permeability change but also to maintain the transport system in a functional state.

The presence of Mg++ or ethylenediamine-tetraacetic acid (EDTA) in the K+-free preincubation media preserves the responsiveness to a challenge with Ca++ plus K+. In contrast to external K+, the presence of external Ca++ does not reduce but rather enhances the loss of responsiveness. An excess of EDTA prevents the effects of Ca++ while washes with EDTA after exposure to Ca++ do not reverse them.

In red cell ghosts that contain Ca++ buffers, the transition from a responsive to a nonresponsive state incubation in the absence of external K+ is enhanced. The effects of incubation in the presence of Ca++ in K+-free media are reversed; external Ca++ now reduces the rate at which the responsiveness is lost. The loss of responsiveness after incubation in K+-free media prior to a challenge with external K+ and internal Ca++ does also take place when K+-efflux from red cell ghosts is measured by means of42K+ into media that have the same K+ concentrations as the ghost interior. This confirms that the effects of K+-free incubation are due to the modification of the K+-selective channel rather than to an inhibition of diffusive Cl--efflux.