English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Involvement of the GTP binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes

MPS-Authors
/persons/resource/persons255923

Schmalzing,  Günther
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137890

Schwarz,  Wolfgang
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schmalzing, G., Richter, H.-P., Hansen, A., Schwarz, W., Just, I., & Aktories, K. (1995). Involvement of the GTP binding protein Rho in constitutive endocytosis in Xenopus laevis oocytes. The Journal of Cell Biology: JCB, 130(6), 1319-1332. doi:10.1083/jcb.130.6.1319.


Cite as: https://hdl.handle.net/21.11116/0000-0008-2841-2
Abstract
To study an endocytotic role of the GTP-binding protein RhoA in Xenopus oocytes, we have monitored changes in the surface expression of sodium pumps, the surface area of the oocyte and the uptake of the fluid-phase marker inulin. Xenopus oocytes possess intracellular sodium pumps that are continuously exchanged for surface sodium pumps by constitutive endo- and exocytosis. Injection of Clostridium botulinum C3 exoenzyme, which inactivates Rho by ADP-ribosylation, induced a redistribution of virtually all intracellular sodium pumps to the plasma membrane and increased the surface area of the oocytes. The identical effects were caused by injection of ADP-ribosylated recombinant RhoA into oocytes. The C3 exoenzyme acts by blocking constitutive endocytosis in oocytes, as determined using a mAb to the beta 1 subunit of the mouse sodium pump as a reporter molecule and oocytes expressing heterologous sodium pumps. In contrast, an increase in endocytosis and a decrease in the surface area was induced by injection of recombinant Val14-RhoA protein or Val14-rhoA cRNA. PMA stimulated sodium pump endocytosis, an effect that was blocked by a specific inhibitor of protein kinase C (Gö 16) or by ADP-ribosylation of Rho by C3. Similarly, the phorbol ester-induced increase in fluid-phase endocytosis in oocytes was inhibited by Gö 16, C3 transferase, or by injection of ADP-ribosylated RhoA. In contrast to C3 transferase, C. botulinum C2 transferase, which ADP-ribosylates actin, had no effect on sodium pump endocytosis or PMA-stimulated fluid-phase endocytosis. The data suggests that RhoA is an essential component of a presumably clathrin-independent endocytic pathway in Xenopus oocytes which can be regulated by protein kinase C.