English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO2

MPS-Authors
/persons/resource/persons227608

Lopez-Luna,  Mauricio
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227619

Timoshenko,  Janis
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227605

Kordus,  David
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227610

Rettenmaier,  Clara
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons244748

Chee,  See Wee
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22106

Shaikhutdinov,  Shamil K.
Interface Science, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22020

Roldan Cuenya,  Beatriz
Interface Science, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

acscatal.1c01549.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Lopez-Luna, M., Timoshenko, J., Kordus, D., Rettenmaier, C., Chee, S. W., Hoffman, A. S., et al. (2021). Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO2. ACS Catalysis, 11, 6175-6185. doi:10.1021/acscatal.1c01549.


Cite as: http://hdl.handle.net/21.11116/0000-0008-8032-E
Abstract
Iron-based catalysts are considered active for the hydrogenation of CO2 toward high-order hydrocarbons. Here, we address the structural and chemical evolution of oxide-supported iron nanoparticles (NPs) during the activation stages and during the CO2 hydrogenation reaction. Fe NPs were deposited onto planar SiO2 and Al2O3 substrates by dip coating with a colloidal NP precursor and by physical vapor deposition of Fe. These model catalysts were studied in situ by near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in pure O2, then in H2, and finally in the CO2 + H2 (1:3) reaction mixture in the mbar pressure range and at elevated temperatures. The NAP-XPS results revealed the preferential formation of Fe(III)- and Fe(II)-containing surface oxides under reaction conditions, independently of the initial degree of iron reduction prior to the reaction, suggesting that CO2 behaves as an oxidizing agent even in excess of hydrogen. The formation of the iron carbide phase, often reported for unsupported Fe catalysts in this reaction, was never observed in our systems, even on the samples exposed to industrially relevant pressure and temperature (e.g., 10 bar of CO2 + H2, 300 °C). Moreover, the same behavior is observed for Fe NPs deposited on nanocrystalline silica and alumina powder supports, which were monitored in situ by X-ray absorption spectroscopy (XAS). Our findings are assigned to the nanometer size of the Fe particles, which undergo strong interaction with the oxide support. The combined XPS and XAS results suggest that a core (metal-rich)–shell (oxide-rich) structure is formed within the Fe NPs during the CO2 hydrogenation reaction. The results highlight the important role played by the oxide support in the final structure and composition of nanosized catalysts.