Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exact magnetic properties for classical delta-chains with ferromagnetic and antiferromagnetic interactions in applied magnetic field

MPG-Autoren
/persons/resource/persons184887

Richter,  Johannes
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1911.03081.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dmitriev, D. V., Krivnov, V. Y., Schnack, J., & Richter, J. (2020). Exact magnetic properties for classical delta-chains with ferromagnetic and antiferromagnetic interactions in applied magnetic field. Physical Review B, 101(5): 054427. doi:10.1103/PhysRevB.101.054427.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-8F64-7
Zusammenfassung
We study the thermodynamics of the delta-chain with competing ferro- and antiferromagnetic interactions in an external magnetic field which generalizes the field-free case studied previously. This model plays an important role for the recently synthesized compound Fe10Gd10, which is nearly quantum critical, as well as for the new kagome fluoride Cs2LiTi3F12. The classical version of the model is solved exactly and explicit analytical results for the low-temperature thermodynamics are obtained. The s-spin quantum model is studied using exact diagonalization and finite-temperature Lanczos techniques. Particular attention is focused on the magnetization and the susceptibility. The magnetization of the classical model in the ferromagnetic part of the phase diagram defines the universal scaling function which is valid for the quantum model. The dependence of the susceptibility on the spin quantum number s at the critical point between the ferro- and ferrimagnetic phases is studied and the relation to Fe10Gd10 is discussed.