Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli

MPG-Autoren
/persons/resource/persons254247

Erb,  Tobias J.
Understanding and Building Metabolism, Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

North, J. A., Wildenthal, J. A., Erb, T. J., Evans, B. S., Byerly, K. M., Gerlt, J. A., et al. (2020). A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli. MOLECULAR MICROBIOLOGY, 113(5), 923-937. doi:10.1111/mmi.14459.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-BEA6-7
Zusammenfassung
S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous
essential enzymatic reactions including protein and nucleotide
methylations, secondary metabolite synthesis and radical-mediated
processes. Radical SAM enzymes produce 5MODIFIER LETTER
PRIME-deoxyadenosine, and SAM-dependent enzymes for polyamine,
neurotransmitter and quorum sensing compound synthesis produce 5MODIFIER
LETTER PRIME-methylthioadenosine as by-products. Both are inhibitory and
must be addressed by all cells. This work establishes a bifunctional
oxygen-independent salvage pathway for 5MODIFIER LETTER
PRIME-deoxyadenosine and 5MODIFIER LETTER PRIME-methylthioadenosine in
both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia
coli. Homologous genes for this pathway are widespread in bacteria,
notably pathogenic strains within several families. A phosphorylase
(Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia
coli) followed by an isomerase and aldolase sequentially function to
salvage these two wasteful and inhibitory compounds into adenine,
dihydroxyacetone phosphate and acetaldehyde or
(2-methylthio)acetaldehyde during both aerobic and anaerobic growth.
Both SAM by-products are metabolized with equal affinity during aerobic
and anaerobic growth conditions, suggesting that the dual-purpose
salvage pathway plays a central role in numerous environments, notably
the human body during infection. Our newly discovered bifunctional
oxygen-independent pathway, widespread in bacteria, salvages at least
two by-products of SAM-dependent enzymes for carbon and sulfur salvage,
contributing to cell growth.