Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers

MPG-Autoren
/persons/resource/persons221904

Xian,  L. D.
Songshan Lake Materials Laboratory;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons245033

Kennes,  D. M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Center for Computational Quantum Physics, Simons Foundation Flatiron Institute;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41467-022-31604-w.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

41467_2022_31604_MOESM1_ESM.pdf
(Ergänzendes Material), 14MB

Zitation

Claassen, M., Xian, L. D., Kennes, D. M., & Rubio, A. (2022). Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers. Nature Communications, 13(1): 4915. doi:10.1038/s41467-022-31604-w.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-6AB4-5
Zusammenfassung
We predict that twisted bilayers of 1T-ZrS2 realize a novel and tunable platform to engineer two-dimensional topological quantum phases dominated by strong spin-orbit interactions. At small twist angles, ZrS2 heterostructures give rise to an emergent and twist-controlled moiré Kagome lattice, combining geometric frustration and strong spin-orbit coupling to give rise to a moiré quantum spin Hall insulator with highly controllable and nearly-dispersionless bands. We devise a generic pseudo-spin theory for group-IV transition metal dichalcogenides that relies on the two-component character of the valence band maximum of the 1T structure at Γ, and study the emergence of a robust quantum anomalous Hall phase as well as possible fractional Chern insulating states from strong Coulomb repulsion at fractional fillings of the topological moiré Kagome bands. Our results establish group-IV transition metal dichalcogenide bilayers as a novel moiré platform to realize strongly-correlated topological phases in a twist-tunable setting.