English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning Linear Temporal Properties from Noisy Data: A MaxSAT-Based Approach

MPS-Authors
/persons/resource/persons215577

Neider,  Daniel
Group R. Majumdar, Max Planck Institute for Software Systems, Max Planck Society;

/persons/resource/persons260725

Roy,  Rajarshi
Group R. Majumdar, Max Planck Institute for Software Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gaglione, J.-R., Neider, D., Roy, R., Topcu, U., & Xu, Z. (2021). Learning Linear Temporal Properties from Noisy Data: A MaxSAT-Based Approach. In Z. Hou, & V. Ganesh (Eds.), Automated Technology for Verification and Analysis (pp. 74-90). Berlin: Springer. doi:10.1007/978-3-030-88885-5_6.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6D26-3
Abstract
There is no abstract available