English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Self-generated oxygen gradients control collective aggregation of photosynthetic microbes

MPS-Authors
/persons/resource/persons242733

Fragkopoulos,  Alexandros A.
Group Dynamics of fluid and biological interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons229719

Vachier,  Jérémy
Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons250706

Frey,  Johannes
Group Dynamics of fluid and biological interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons250704

le Menn,  Flora-Maud
Group Dynamics of fluid and biological interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173589

Mazza,  Marco G.
Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons192996

Wilczek,  Michael
Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons185097

Zwicker,  David
Max Planck Research Group Theory of Biological Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons187626

Bäumchen,  Oliver
Group Dynamics of fluid and biological interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fragkopoulos, A. A., Vachier, J., Frey, J., le Menn, F.-M., Mazza, M. G., Wilczek, M., et al. (2021). Self-generated oxygen gradients control collective aggregation of photosynthetic microbes. Journal of The Royal Society Interface, 18: 20210553. doi:10.1098/rsif.2021.0553.


Cite as: http://hdl.handle.net/21.11116/0000-0009-8E06-1
Abstract
For billions of years, photosynthetic microbes have evolved under the variable exposure to sunlight in diverse ecosystems and microhabitats all over our planet. Their abilities to dynamically respond to alterations of the luminous intensity, including phototaxis, surface association and diurnal cell cycles, are pivotal for their survival. If these strategies fail in the absence of light, the microbes can still sustain essential metabolic functionalities and motility by switching their energy production from photosynthesis to oxygen respiration. For suspensions of motile C. reinhardtii cells above a critical density, we demonstrate that this switch reversibly controls collective microbial aggregation. Aerobic respiration dominates over photosynthesis in conditions of low light, which causes the microbial motility to sensitively depend on the local availability of oxygen. For dense microbial populations in self-generated oxygen gradients, microfluidic experiments and continuum theory based on a reaction– diffusion mechanism show that oxygen-regulated motility enables the collective emergence of highly localized regions of high and low cell densities.