Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Self-generated oxygen gradients control collective aggregation of photosynthetic microbes

Fragkopoulos, A. A., Vachier, J., Frey, J., le Menn, F.-M., Mazza, M. G., Wilczek, M., et al. (2021). Self-generated oxygen gradients control collective aggregation of photosynthetic microbes. Journal of The Royal Society Interface, 18: 20210553. doi:10.1098/rsif.2021.0553.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Fragkopoulos, Alexandros A.1, Autor           
Vachier, Jérémy2, Autor           
Frey, Johannes1, Autor           
le Menn, Flora-Maud1, Autor           
Mazza, Marco G.2, Autor           
Wilczek, Michael3, Autor           
Zwicker, David4, Autor           
Bäumchen, Oliver1, Autor           
Affiliations:
1Group Dynamics of fluid and biological interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063300              
2Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063308              
3Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2266693              
4Max Planck Research Group Theory of Biological Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2516693              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: For billions of years, photosynthetic microbes have evolved under the variable
exposure to sunlight in diverse ecosystems and microhabitats all over our
planet. Their abilities to dynamically respond to alterations of the luminous
intensity, including phototaxis, surface association and diurnal cell cycles, are
pivotal for their survival. If these strategies fail in the absence of light, the
microbes can still sustain essential metabolic functionalities and motility by
switching their energy production from photosynthesis to oxygen respiration.
For suspensions of motile C. reinhardtii cells above a critical density, we demonstrate
that this switch reversibly controls collective microbial aggregation.
Aerobic respiration dominates over photosynthesis in conditions of low light,
which causes the microbial motility to sensitively depend on the local availability
of oxygen. For dense microbial populations in self-generated oxygen
gradients, microfluidic experiments and continuum theory based on a reaction–
diffusion mechanism show that oxygen-regulated motility enables the
collective emergence of highly localized regions of high and low cell densities.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-122021
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1098/rsif.2021.0553
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of The Royal Society Interface
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 9 Band / Heft: 18 Artikelnummer: 20210553 Start- / Endseite: - Identifikator: ISSN: 1742-5662