Researcher Portfolio
Wilczek, Michael
Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society
Researcher Profile
Position: Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons192996
Publications
(1 - 25 of 83)
: Knöller, W., Bagheri, G., von Olshausen, P., & Wilczek, M. (2024). Analysis of the measurement uncertainty for a 3D wind lidar. Atmospheric Measurement Techniques, 17(23), 6913-6931. doi:10.5194/amt-17-6913-2024. [PubMan] : Schröder, M., Bätge, T., Bodenschatz, E., Wilczek, M., & Bagheri, G. (2024). Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time. Atmospheric Measurement Techniques, 17(2), 627-657. doi:10.5194/amt-17-627-2024. [PubMan] : Carbone, M., Peterhans, V. J., Ecker, A. S., & Wilczek, M. (2024). Tailor-Designed Models for the Turbulent Velocity Gradient through Normalizing Flow. Physical Review Letters, 133: 184001. doi:10.1103/PhysRevLett.133.184001. [PubMan] : Carbone, M., & Wilczek, M. (2024). Asymptotic predictions on the velocity gradient statistics in low-Reynolds-number random flows: onset of skewness, intermittency and alignments. Journal of Fluid Mechanics, 986: A25. doi:10.1017/jfm.2024.165. [PubMan] : Buaria, D., Lawson, J., & Wilczek, M. (2024). Twisting vortex lines regularize Navier-Stokes turbulence. Science Advances, 10(37): eado1969. doi:10.1126/sciadv.ado1969. [PubMan] : Zierenberg, J., Spitzner, F. P., Dehning, J., Priesemann, V., Weigel, M., & Wilczek, M. (2023). How contact patterns destabilize and modulate epidemic outbreaks. New Journal of Physics, 25: 053033. doi:10.1088/1367-2630/acd1a7. [PubMan] : Fragkopoulos, A. A., Vachier, J., Frey, J., le Menn, F.-M., Wilczek, M., Mazza, M., & Bäumchen, O. (2022). Light controls motility and phase separation of photosynthetic microbes. arXiv, (submitted). Retrieved from http://arxiv.org/abs/2006.01675. [PubMan] : Fleig, P., Kramar, M., Wilczek, M., & Alim, K. (2022). Emergence of behaviour in a self-organized living matter network. eLife, 11: e62863. doi:10.1101/2020.09.06.285080. [PubMan] : Carbone, M., & Wilczek, M. (2022). Only two Betchov homogeneity constraints exist for isotropic turbulence. Journal of Fluid Mechanics, 948: R2. doi:10.1017/jfm.2022.680. [PubMan] : Lalescu, C. C., Bramas, B., Rampp, M., & Wilczek, M. (2022). An Efficient Particle Tracking Algorithm for Large-Scale Parallel Pseudo-Spectral Simulations of Turbulence. Computer Physics Communications, 278: 108406. doi:10.1016/j.cpc.2022.108406. [PubMan] : Arguedas-Leiva, J. A., Słomka, J., Lalescu, C. C., Stocker, R., & Wilczek, M. (2022). Elongation enhances encounter rates between phytoplankton in turbulence. Proceedings of the National Academy of Sciences, 119(32): e2203191119. doi:10.1073/pnas.2203191119. [PubMan] : Kreienkamp, K. L., & Wilczek, M. (2022). Modeling probability density functions of velocity fluctuations in wind farms. Wind Energy, 2022, 1-13. doi:10.1002/we.2707. [PubMan] : Bentkamp, L., Drivas, T. D., Lalescu, C. C., & Wilczek, M. (2022). The statistical geometry of material loops in turbulence. Nature Communications, 13: 2088. [PubMan] : Arguedas-Leiva, J. A., Carroll, E., Biferale, L., Wilczek, M., & Bustamante, M. D. (2022). Minimal phase-coupling model for intermittency in turbulent systems. Physical Review Research, 4: L032035. doi:10.1103/PhysRevResearch.4.L032035. [PubMan] : Carbone, M., & Wilczek, M. (2021). Modelling The Pressure Hessian in Turbulence Through Tensor Function Representation Theory. In Progress in Turbulence IX, Springer Proceedings in Physics book series (SPPHY) (pp. 223-229). Cham: Springer. [PubMan] : Carbone, M., Bragg, A., Tom, J., Wilczek, M., & Iovieno, M. (2021). The Conservative Pressure Hessian and the Free Fluid Particle Model. In Progress in Turbulence IX, Springer Proceedings in Physics book series (SPPHY) (pp. 215-221). Cham: Springer. [PubMan] : James, M., Suchla, D. A., Dunkel, J., & Wilczek, M. (2021). Emergence and melting of active vortex crystals. Nature Communications, 12: 5630. doi:10.1038/s41467-021-25545-z. [PubMan] : Pujara, N., Arguedas-Leiva, J. A., Lalescu, C. C., Bramas, B., & Wilczek, M. (2021). Shape- and scale-dependent coupling between spheroids and velocity gradients in turbulence. Journal of Fluid Mechanics, 922: R6. doi:10.1017/jfm.2021.543. [PubMan] : Contreras, S., Dehning, J., Loidolt, M., Zierenberg, J., Spitzner, F. P., Urrea-Quintero, J. H., Mohr, S. B., Wilczek, M., Wibral, M., & Priesemann, V. (2021). The challenges of containing SARS-CoV-2 via test-trace-and-isolate. Nature Communications, 12: 378. doi:10.1038/s41467-020-20699-8. [PubMan] : Lalescu, C. C., & Wilczek, M. (2021). Transitions of turbulent superstructures in generalized Kolmogorov flow. Physical Review Research, 3(2): L022010. doi:10.1103/PhysRevResearch.3.L022010. [PubMan] : Koch, C.-M., & Wilczek, M. (2021). Role of Advective Inertia in Active Nematic Turbulence. Physical Review Letters, 127: 268005. doi:10.1103/PhysRevLett.127.268005. [PubMan] : Wilczek, M., Heidenreich, S., & Bär, M. (2021). Die Physik aktiver Fluide. Physik Journal, 20(12), 35-40. [PubMan] : Sinhuber, M., Friedrich, J., Grauer, R., & Wilczek, M. (2021). Multi-level stochastic refinement for complex time series and fields: a data-driven approach. New Journal of Physics, 23: 063063. doi:10.1088/1367-2630/abe60e. [PubMan] : Bätge, T., & Wilczek, M. (2021). Small-scale averaging coarse-grains passive scalar turbulence. Physical Review Fluids, 6: 064503. doi:10.1103/PhysRevFluids.6.064503. [PubMan] : Fragkopoulos, A. A., Vachier, J., Frey, J., le Menn, F.-M., Mazza, M. G., Wilczek, M., Zwicker, D., & Bäumchen, O. (2021). Self-generated oxygen gradients control collective aggregation of photosynthetic microbes. Journal of The Royal Society Interface, 18: 20210553. doi:10.1098/rsif.2021.0553. [PubMan]