Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Vortex control in superconducting Corbino geometry networks

MPG-Autoren
/persons/resource/persons245033

Kennes,  D. M.
Institut für Theorie der Statistischen Physik, RWTH Aachen and JARA - Fundamentals of Future Information Technology;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free Electron Laser Science;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2111.14686.pdf
(Preprint), 22MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Okugawa, T., Park, S., Recher, P., & Kennes, D. M. (2021). Vortex control in superconducting Corbino geometry networks.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-9662-F
Zusammenfassung
In superconductors, vortices induced by a magnetic field are nucleated randomly due to some random fluctuations or pinned by impurities or boundaries, impeding the development of vortex based quantum devices. Here, we propose a superconducting structure which allows to nucleate and control vortices on-demand by controlling magnetic fields and currents. Using time-dependent Ginzburg Landau theory, we study a driven vortex motion in two-dimensional Corbino geometries of superconductor-normal metal-superconductor Josephson junctions. We remedy the randomness of nucleation by introducing normal conducting rails to the Corbino disk to guide the nucleation process and motion of vortices towards the junction. We elaborate on the consequences of rail-vortex and vortex-vortex interactions to the quantization of resistance across the junction. Finally, we simulate the nucleations and manipulations of two and four vortices in Corbino networks, and discuss its application to Majorana zero mode braiding operations. Our study provides a potential route towards quantum computation with non-Abelian anyons.