English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Conformal invariants of 3-braids and counting functions

MPS-Authors
/persons/resource/persons235208

Jöricke,  Burglind
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Jöricke, B. (2022). Conformal invariants of 3-braids and counting functions. Annales de la Faculté des Sciences de Toulouse. Mathématiques, 31(5), 1323-1341. doi:10.5802/afst.1721.


Cite as: https://hdl.handle.net/21.11116/0000-000A-0001-4
Abstract
We consider a conformal invariant of braids, the extremal length with totally
real horizontal boundary values $\lambda_{tr}$. The invariant descends to an
invariant of elements of $\mathcal{B}_n\diagup\mathcal{Z}_n$, the braid group
modulo its center. We prove that the number of elements of
$\mathcal{B}_3\diagup\mathcal{Z}_3$ of positive $\lambda_{tr}$ grows
exponentially. The estimate applies to obtain effective finiteness theorems in
the spirit of the geometric Shafarevich conjecture over Riemann surfaces of
second kind. As a corollary we obtain another proof of the exponential growth
of the number of conjugacy classes of $\mathcal{B}_3\diagup\mathcal{Z}_3$ with
positive entropy not exceeding $Y$.