English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Whole‐brain dynamics differentiate among cisgender and transgender individuals

MPS-Authors
/persons/resource/persons208989

Deco,  Gustavo
Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain;
Catalan Institution for Research and Advanced Studies (ICREA), University Pompeu Fabra, Barcelona, Spain;
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Uribe_2022.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Uribe, C., Escrichs, A., Filippi, E., Sanz‐Perl, Y., Junque, C., Gomez‐Gil, E., et al. (2022). Whole‐brain dynamics differentiate among cisgender and transgender individuals. Human Brain Mapping. doi:10.1002/hbm.25905.


Cite as: https://hdl.handle.net/21.11116/0000-000A-83F2-0
Abstract
How the brain represents gender identity is largely unknown, but some neural differences have recently been discovered. We used an intrinsic ignition framework to investigate whether there are gender differences in the propagation of neural activity across the whole-brain and within resting-state networks. Studying 29 trans men and 17 trans women with gender incongruence, 22 cis women, and 19 cis men, we computed the capability of a given brain area in space to propagate activity to other areas (mean-ignition), and the variability across time for each brain area (node-metastability). We found that both measurements differentiated all groups across the whole brain. At the network level, we found that compared to the other groups, cis men showed higher mean-ignition of the dorsal attention network and node-metastability of the dorsal and ventral attention, executive control, and temporal parietal networks. We also found higher mean-ignition values in cis men than in cis women within the executive control network, but higher mean-ignition in cis women than cis men and trans men for the default mode. Node-metastability was higher in cis men than cis women in the somatomotor network, while both mean-ignition and node-metastability were higher for cis men than trans men in the limbic network. Finally, we computed correlations between these measurements and a body image satisfaction score. Trans men's dissatisfaction as well as cis men's and cis women's satisfaction toward their own body image were distinctively associated with specific networks in each group. Overall, the study of the whole-brain network dynamical complexity discriminates gender identity groups, functional dynamic approaches could help disentangle the complex nature of the gender dimension in the brain.