Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
 ZurückNächste 

Freigegeben

Zeitschriftenartikel

Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis

MPG-Autoren
/persons/resource/persons84969

Stegle,  O
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons75313

Borgwardt,  K
Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Windram, O., Madhou, P., McHattie, S., Hill, C., Hickman, V., Cooke, E., et al. (2012). Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. The Plant Cell, 24(9), 3530-3557. doi:10.1105/tpc.112.102046.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-B630-2
Zusammenfassung
Transcriptional reprogramming forms a major part of a plant's response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea.