English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

Protein design of growth factor inhibitors

MPS-Authors
/persons/resource/persons274305

Maksymenko,  K
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

/persons/resource/persons271238

ElGamacy,  M
Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Maksymenko, K., Müller, P., Skokowa, J., Lupas, A., & ElGamacy, M. (2022). Protein design of growth factor inhibitors. In Advances in Protein Folding, Evolution and Design (APFED 2022) (pp. 29).


Cite as: https://hdl.handle.net/21.11116/0000-000A-E137-A
Abstract
Growth factors are signaling molecules coordinating the complex functionality of multicellular organisms during development and homeostasis. Since aberrant expression of growth factors can cause diverse disorders such as cancer, autoimmune and cardiovascular diseases, growth factors and their receptors are central targets for therapeutic modulation. One of the options to manipulate signaling interactions is to use protein-based binders that are highly specific and able to target various molecular surfaces. Here, we present two different strategies of computational protein design to obtain inhibitors against growth factors which are key modulators of tumor progression. The first approach requires the structure of a native growth factor:growth factor receptor complex and aims to re-engineer a natural binding domain to make it more soluble, more stable, or more affine. In contrast, the second approach relies only on the structure of a target epitope and takes advantage of new software for massive-scale docking of a target site against a protein structure database to select the high shape complementary scaffolds. Adopting the first approach, we designed inhibitors of epidermal growth factor (EGF) using a single domain of EGF receptor as a template. Experimental evaluation of only two designed candidates revealed that both of them are solubly expressed, stable, and bind EGF with nanomolar affinities (i.e. 5-fold stronger than a native domain). Furthemore, we showed that one design inhibits EGF-induced proliferation of epidermoid carcinoma cells with IC50 of 0.5 nM. Using the second strategy, we designed inhibitors of vascular endothelial growth factor (VEGF) based on two different scaffolds. The binding affinities of the designs (16 candidates) to VEGF range from nano- to micromolar levels. X-ray structure determination of one of the candidates showed atomic-level agreement with the design model. Moreover, the best designs showed the ability to inhibit proliferation of VEGF-dependent cells. Thus, our results demonstrate the feasibility of the rational and generalizable approaches to design high-affinity protein binders against predefined conformational motifs.