English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The HAMP domain structure implies helix rotation in transmembrane signaling

MPS-Authors
/persons/resource/persons275636

Hulko,  M
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons277268

Gruber,  M
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271290

Truffault,  V
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272291

Martin,  J       
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Protein Folding, Unfolding and Degradation Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN       
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons271255

Coles,  M       
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Transmembrane Signal Transduction Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hulko, M., Berndt, F., Gruber, M., Linder, J., Truffault, V., Schultz, A., et al. (2006). The HAMP domain structure implies helix rotation in transmembrane signaling. Cell, 126(5), 929-940. doi:10.1016/j.cell.2006.06.058.


Cite as: https://hdl.handle.net/21.11116/0000-000B-250D-E
Abstract
HAMP domains connect extracellular sensory with intracellular signaling domains in over 7500 proteins, including histidine kinases, adenylyl cyclases, chemotaxis receptors, and phosphatases. The solution structure of an archaeal HAMP domain shows a homodimeric, four-helical, parallel coiled coil with unusual interhelical packing, related to the canonical packing by rotation of the helices. This suggests a model for the mechanism of signal transduction, in which HAMP alternates between the observed conformation and a canonical coiled coil. We explored this mechanism in vitro and in vivo using HAMP domain fusions with a mycobacterial adenylyl cyclase and an E. coli chemotaxis receptor. Structural and functional studies show that the equilibrium between the two forms is dependent on the side-chain size of residue 291, which is alanine in the wild-type protein.