English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Characterization of AMA, a new AAA protein from Archaeoglobus and methanogenic archaea

MPS-Authors
/persons/resource/persons277403

Djuranovic,  S       
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons78342

Lupas,  AN       
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

/persons/resource/persons272291

Martin,  J       
Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;
Protein Folding, Unfolding and Degradation Group, Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Djuranovic, S., Rockel, B., Lupas, A., & Martin, J. (2006). Characterization of AMA, a new AAA protein from Archaeoglobus and methanogenic archaea. Journal of Structural Biology, 156(1), 130-138. doi:10.1016/j.jsb.2006.03.010.


Cite as: https://hdl.handle.net/21.11116/0000-000B-284E-2
Abstract
We have previously reported a new group of AAA proteins, which is only found in Archaeoglobus and methanogenic archaea (AMA). The proteins are phylogenetically basal to the metalloprotease clade and their N-terminal domain is homologous to the beta-clam part of the N-domain of CDC48-like proteins. Here we report the biochemical and biophysical characterization of Archaeoglobus fulgidus AMA, and of its isolated N-terminal (AMA-N) and ATPase (AMA-DeltaN) domains. AfAMA forms hexameric complexes, as does AMA-N, while AMA-DeltaN only forms dimers. The ability to hexamerize is dependent on the integrity of a GYPL motif in AMA-N, which resembles the pore motif of FtsH and HslU. While the physiological function of AMA is unknown, we show that it has ATP-dependent chaperone activity and can prevent the thermal aggregation of proteins in vitro. The ability to interact with non-native proteins resides in the N-domain and is energy-independent.