English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High stress twinning in a compositionally complex steel of very high stacking fault energy

MPS-Authors
/persons/resource/persons125320

Ponge,  Dirk
Mechanism-based Alloy Design, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons195255

Li,  Zhiming
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 China;
High-Entropy Alloys, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
School of Materials Science and Engineering, Central South University, Changsha 410083, China;

/persons/resource/persons195255

Li,  Zhiming
High-Entropy Alloys, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

s41467-022-31315-2.pdf
(Publisher version), 10MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, Z., Lu, W., Min Song, F. A., Ponge, D., Raabe, D., Li, Z., et al. (2022). High stress twinning in a compositionally complex steel of very high stacking fault energy. Nature Communications, 13: 3598. doi:10.1038/s41467-022-31315-2.


Cite as: https://hdl.handle.net/21.11116/0000-000B-9E8E-4
Abstract
Deformation twinning is rarely found in bulk face-centered cubic (FCC) alloys with very high stacking fault energy (SFE) under standard loading conditions. Here, based on results from bulk quasi-static tensile experiments, we report deformation twinning in a micrometer grain-sized compositionally complex steel (CCS) with a very high SFE of ~79 mJ/m2, far above the SFE regime for twinning (<~50 mJ/m2) reported for FCC steels. The dual-nanoprecipitation, enabled by the compositional degrees of freedom, contributes to an ultrahigh true tensile stress up to 1.9 GPa in our CCS. The strengthening effect enhances the flow stress to reach the high critical value for the onset of mechanical twinning. The formation of nanotwins in turn enables further strain hardening and toughening mechanisms that enhance the mechanical performance. The high stress twinning effect introduces a so far untapped strengthening and toughening mechanism, for enabling the design of high SFEs alloys with improved mechanical properties.