Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neural sensing and control in a kilometer-scale gravitational-wave observatory

MPG-Autoren
/persons/resource/persons231145

Mukund,  Nikhil
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons206591

Lough,  James
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons226605

Bisht,  Aparna
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40515

Wittel,  Holger
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons231127

Nadji,  Severin Landry
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40422

Affeldt,  Christoph
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons231077

Bergamin,  Fabio
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40432

Brinkmann,  Marc
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40468

Kringel,  Volker
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40475

Lück,  Harald
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40509

Weinert,  Michael
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2301.06221.pdf
(Preprint), 9MB

PhysRevApplied.20.064041.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mukund, N., Lough, J., Bisht, A., Wittel, H., Nadji, S. L., Affeldt, C., et al. (2023). Neural sensing and control in a kilometer-scale gravitational-wave observatory. Physical Review Applied, 20(6): 064041. doi:10.1103/PhysRevApplied.20.064041.


Zitierlink: https://hdl.handle.net/21.11116/0000-000C-47AB-4
Zusammenfassung
Suspended optics in gravitational wave (GW) observatories are susceptible to
alignment perturbations and, in particular, to slow drifts over time due to
variations in temperature and seismic levels. Such misalignments affect the
coupling of the incident laser beam into the optical cavities, degrade both
circulating power and optomechanical photon squeezing, and thus decrease the
astrophysical sensitivity to merging binaries. Traditional alignment techniques
involve differential wavefront sensing using multiple quadrant photodiodes, but
are often restricted in bandwidth and are limited by the sensing noise. We
present the first-ever successful implementation of neural network-based
sensing and control at a gravitational wave observatory and demonstrate
low-frequency control of the signal recycling mirror at the GEO 600 detector.
Alignment information for three critical optics is simultaneously extracted
from the interferometric dark port camera images via a CNN-LSTM network
architecture and is then used for MIMO control using soft actor-critic-based
deep reinforcement learning. Overall sensitivity improvement achieved using our
scheme demonstrates deep learning's capabilities as a viable tool for real-time
sensing and control for current and next-generation GW interferometers.