日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

First-Principles Simulations of Tip Enhanced Raman Scattering Reveal Active Role of Substrate on High-Resolution Images

MPS-Authors
/persons/resource/persons232555

Akkoush,  Alaa
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21421

Rossi,  Mariana
NOMAD, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

acs.jpclett.3c01216.pdf
(出版社版), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Litman, Y., Bonafé, F. P., Akkoush, A., Appel, H., & Rossi, M. (2023). First-Principles Simulations of Tip Enhanced Raman Scattering Reveal Active Role of Substrate on High-Resolution Images. The Journal of Physical Chemistry Letters, 14(30), 6850-6859. doi:10.1021/acs.jpclett.3c01216.


引用: https://hdl.handle.net/21.11116/0000-000D-8F23-B
要旨
Tip-enhanced Raman scattering (TERS) has emerged as a powerful tool to obtain subnanometer spatial resolution fingerprints of atomic motion. Theoretical calculations that can simulate the Raman scattering process and provide an unambiguous interpretation of TERS images often rely on crude approximations of the local electric field. In this work, we present a novel and first-principles-based method to compute TERS images by combining Time Dependent Density Functional Theory (TD-DFT) and Density Functional Perturbation Theory (DFPT) to calculate Raman cross sections with realistic local fields. We present TERS results on free-standing benzene and C60 molecules, and on the TCNE molecule adsorbed on Ag(100). We demonstrate that chemical effects on chemisorbed molecules, often ignored in TERS simulations of larger systems, dramatically change the TERS images. This observation calls for the inclusion of chemical effects for predictive theory-experiment comparisons and an understanding of molecular motion at the nanoscale.